Spatial Data Mining and University Courses Marketing

نویسندگان

  • Hong Tang
  • Simon McDonald
چکیده

Movement of university admission is not random. Student admission data can be used to define the likely source of students and movement of the source. Thus, it can help the university improve its courses marketing strategy. Standard database and statistical methods do not work well with interrelated spatial data. The ongoing research presented in this paper attempts to use Geographic Information System (GIS), spatial statistical techniques, and spatial data mining to explore the relationships between the source of students (such as area), its spatial components (such as connectivity and distance), and the attribute data (such as family income and education backgrounds). Multiple level spatial classifications and association rules are adopted to identify the patterns and to predict the trend of incoming student source. The preliminary results of this research confirm that sources of students tend to be located in the particular spatial areas and with certain geographical/non-geographical settings. This paper also discusses the limitations of the adopted approach and the directions for future research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating Gis and Spatial Data Mining Technique for Target Marketing of University Courses

Student populations tend to be located in particular spatial areas and within specific demographic settings. Spatial and nonspatial data such as the university's admission records, census data, transport network data, and university campus location data can be used to describe, explain, and predict university student admission patterns, thus provide information to assist the university with imp...

متن کامل

Combining data mining and group decision making in retailer segmentation based on LRFMP variables

Data mining is a powerful tool for firms to extract knowledge from their customers’ transaction data. One of the useful applications of data mining is segmentation. Segmentation is an effective tool for managers to make right marketing strategies for right customer segments. In this study we have segmented retailers of a hygienic manufacture. Nowadays all manufactures do understand that for st...

متن کامل

A Study to Improve the Response in Email Campaigning by Comparing Data Mining Segmentation Approaches in Aditi Technologies

Email marketing is increasingly recognized as an effective Internet marketing tool. In this study, a questionnaire is constructed and distributed to a sample of 146 prospects of Aditi Technologies to find the factors associated with higher response rates. The collected data is analyzed using Factor Analysis and the 11 factors, From Line, Subject Line, Personalization of the subject line, Timing...

متن کامل

Developing a Course Recommender by Combining Clustering and Fuzzy Association Rules

Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...

متن کامل

A Study on Application of Spatial Data Mining Techniques for Rural Progress

This paper focuses on the application of Spatial Data mining Techniques to efficiently manage the challenges faced by peripheral rural areas in analyzing and predicting market scenario and better manage their economy. Spatial data mining is the task of unfolding the implicit knowledge hidden in the spatial databases. The spatial Databases contain both spatial and non-spatial attributes of the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001